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STRUCTURES OF THE CONJUGATE SATURATION
AND CONCENTRATION DISCONTINUITIES |

IN THE DISPLACEMENT OF OIL BY A SOLUTION
OF AN ACTIVE MATERIAL

O. M. Alishaeva; V. M. Entov, : UDC 532.546
and A. F. Zazovskii

A general description of the displacement of oil by a solution of an active material not only in the basic
case of a single active factor, but also in more complicated situations is presented in [1-5]. Here a central
part is played by the scope for constructing a solution in a large~scale approximation, i.e., neglecting diffusion
processes of various types (capillarity, diffusion proper, and thermal conductivity). These processes have
marked effects on the solution only in zones where the variables alter sharply, which correspond to discon~
tinuities in the large-scale approximation. Here we examine the fine structure of the transition zones. The
results may be of value in estimating the limits to the application of the large-scale approximation and to the
failure times for the layer of active material, as well as in developing numerical and approximate methods.

1. Formulation: External Solution. We consider the one~dimensional frontal displacement of oil by a
solution of an active material. We write the equations for the phase infiltration law (=1 for water and i =2
for oil) and the conservation equations for water, oil, and the active material on the basis that the mass con~
centrations of the material inthewater c and in the oil ¢ are small, while the porosity m, permeability k,
and phase densities py and p, are constant:

up = —(kfu(s, o) mwil))opi/az (i =1, 2), a.1)
p: — P1 =P = () (),
mos/ot -+ du,/dx = 0, —mds/dt 4 du,/dx = 0,

m s [res + 9 (0) (1 — ) + 2 (] + 5 wew + 0 0 wa] = 57 (D)

Here s is the water content; mp,a, mass of sorbed material in unit volume of the porous medium; f;, yi,
pis phase permeability, viscosity, and pressure for phase i; D, diffusion coefficient for the active material;
p, capillary pressure, whose dependence on the surface tension incorporates the coefficient y(c); J, a Leverett
function; x, coordinate; t, time; and w =p,/p,.

We introduce the dimensionless variable
& =2/L, ¢ = ugt/L, ui = ui/ u,, Pi = pi/Bp, uy = kAp/p; (0) Ly
wi = w5/t (0), I’ = DIDy, ¥ (€) = 7 () (0), & = y (0)/Ap, v = Dy/uoL,

where L, Ap, Dy are the characteristic values of the size of the flow region, the external pressure difference,
and the diffusion coefficient,

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i- Tekhnicheskoi Fiziki, No. 5, pp. 93-102, Septem~
ber-October, 1982, Original article submitted July 13, 1981.
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We subsequently omit the primes to the dimensionless variables, eliminate the pressure from system
(1.1}, and take the overall volume flow rate U=u1 +u,y as constant to get

(1.2) m +U —~+e 2 (DQ) =0, F = f,/(f, + fatiy/1sg), ® = Ffo/phs, (1.2)

m%“(’“““’)”“]+Ua[F<%c—(p>+q>1 : ?-—{(%c-—cp)d)Q (D%}'),

Q = yJ'ds/8zx + v Jcidz, ¥ = dyl/de, J' = dJ/ds;
s(z, 0} = s, c(z, 0) = ¢, (0, t) = s° c(0, &) = 1.3)
We put € =v =0 in (1.2) to get a problem corresponding to the large~scale approximation [1]:
8 aF
Mg+ U S5 = 0, m 2 [s(uc — ¢)+ @+ al + UL F (e —g) + ] =0, (1.4)
3(1'7 0) = Sp, L‘(.%, O) = co(x = O): S(Oa t) = sn., C(OJ t) = cﬂ(t > O)
Let c*> ¢y for definiteness. The problem of (1.4) has a self-modeling solution [1-5] s=s (), c=c(f), & =mx/Ut,
which will be considered as constructed. As a rule, this contains discontinuities, at which the integral con-
servation laws apply (V is the speed of a discontinuity):

&ilsl = [F1, Ei{st + lo + al/lxc — 1} = F£ + [g)/[xc — g, (1.5)
gl' = mV/Uz [f] = f+ - f—, fi = f(gj + 0)-

An additional condition for the stability of the discontinuities amounts to the specification that the number
of dimensionless characteristic velocities is three before the setup and after it, for which the following inequal-
ities are obeyed:

SES ) Z 8, Bt N < E G k=12), 1.6)

and this condition will be refined below. Here £; (i =1, 2) are the dimensionless characteristic velocities of
system (1.4). The characteristics of (1.4) dx/dt = (U/m) gﬂ{ (i =1, 2) that satisfy (1.6) are called those arriving
at the discontinuity, while the others are called the leaving ones.

The method of constructing the self-modeling solution has been developed in [1-5], so wé can take the
external solution to the displacement problem corresponding to £ =v =0 as known.

2, Tnternal Solution. The structure of the s steps is well known [6, 7], so we examine the structure of
the conjugate s, ¢ steps. To construct the internal solution in the neighborhood of an s, ¢ step we transfer in
(1.2) to a system of coordinates moving along with the step &= &—Vt)/g, 7 =t) and seek a nontrivial stationary
solution:

,03

, » OC
(‘U—g;—gja-n) + an—l—uan(‘bg) 0,2 =yJ ?JTﬁ’ @.1)

m 0 e
(7%~ f%)ls<’“—¢)+¢+al+ L (F (xe — 9) + @] + 77 32 [ 0xe — cp)cbs21=8—§,§n(0§—n),

that satisfies the linkage conditions
s(o0) = s, e(F o) = ct. 2.2)

For as/a'r = 9¢/0r =0 we integrate (2.1) on the basis of 2.2) to get

ds/dy = —HIBY + (¢ — ¢~ )Z]/G de/dn = H(c — ¢-)Z, : 2.3)
Z(c) = F~(x — 8¢) + 8¢ — E;ls=(x — 8¢) + 8¢ + (@ — a~)/(c — c)];
8¢ = (¢ — ¢ V(e — &), Y(s, 0) = F — F~— Efs — ), 2.4)

H(s, ¢) = eU/vD, G(s, ¢) = vJ'iv'J. B(s. ¢} = vD/ey' JD

Equations (2’.3) correspond to the phase plane of s and c to the equation
delds = —G(s, c)(c — ¢7)Z(c)/ (¢ — ¢7)Z(e) + Bls, ¢)Y(s, c)l. 2.5)
I follows from (1.5) that Z(c¥) =Y (5%, ¢) =0, so the points (s7, ¢7) and (s¥, ¢*) in the phase plane are
singular points for 2.5).

The internal structure of the conjugate s, ¢ steps is shown below to be closely related to the conditions
for'the stability of these and to the global structure of the solution. The latter for fixed values of c’, ¢, and
=1 is completely determined by the form of F(s, c), ¢ (¢), a{c) and by the value of the initial water content
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Fig. 2

s¢ [1]. "We have restricted ourselves so far to the case of complete discontinuities in the concentration, where
c"=c°, c+=co; such a situation occurs for example if @,cc=0, a,cc= 0 [11.

Function F ¢=8F/dc will subsequently be considered as of constant sign. There are two types of con-
jugate s, c steps for F =0, which are dependent on the value of So: a) a AB step for s;=s4, when [s]<0; b)
a A'C' step for sy > s at which [s] > 0. For these we have correspondingly

T =5<H B <<, HF<g i <<t 2.6)

In Fig. 1a, 0, = (—lp + allnc — ¢l, —Ipl/lxe — @b straight-line segment O,C touches the curve F(s,
c ) at point A, while point C corresponds to the value s =8,

We first consider the discontinuity AB. It is convenient to transfer the construction to the s, ¢ phase
plane (Fig, 1b). The curves F(s, c*) correspond to segments of the straight lines ¢ =c*, the straight-line seg-
ment BAC in the s,f plane corresponds to the curve BAC, along which Y (s, c) =0, while Y<0 above BAC and
Y >0 below it. Also, Z(c) =0 and Z(c™ >0 by virtue of (1.5) and (2.6). If v'(c)<0 the material reduces the
interfacial tension) B(s, ¢})<0, and if Z(c)=0 in the band cT<c<c™ we have that (2.5) has no singular points in
this band apart from A, B, and C. The structure of the desired form should mean that there is a path joining
point A and B. X is sufficient to use the inequalities J'(s) <0, G> 0, B<0 and conditions (1.5) and 2.6) in order
to determine the types of the singular points, in accordance with which

Fs(sg, ct) <=F,<Fi 4t <0,47>0,
4 3 . e ’
A() = dc [(C —¢ )Z (C)] =F* (%~ ¢,0) + ¢ — gi[si(”_vtp,c)"}“‘@,c +a,c]‘
I can be shown that the point B= (s"', chHisa simple saddle point, while C = (s*, c"') is a simple cusp, and A=

(s7, ¢7) is a double saddle-cusp with one cusp sector and two saddle ones. Figure 2 shows the general picture
in the region of this point. The nonzero slopes of the paths passing through the singular points are defined by

ky = [AG + B(F s — E))(A + BF ), = 2.7
so ki{(s™, ¢ )<0 (Fig. 2a). The signs of Iy (s+, c") and Ky (S 4, c") are not established unambiguously, but since

[Bs, c){ >>1 we can assume that the signs of the numerator and denominator in 2.7) will be determined by
B(s, c), and then ky(s*, ¢ 0, ki (s 4, ¢} <0 (Fig. 2b and d). :



Fig. 3

The following is the asymptote of the paths for the bundle emerging from point A:
c—¢ ~-—c*exp [R/(s — s_)] (s—s ), R= 2G'A"/(B"F;s) >0.

This path exists and is unique; it is the separatrix of the saddle point B belonging to the cusp bundle of
point A. This passes above the isocline to infinity.

We integrate (2.3) near points A and B to get

s— 8§ ~2(G /B H Fi)q ™ c—c ~ comstq e % o= HiAi,_ n— =4 oo, 2.8)

g ot
s—s* ~conste™ ™ ¢ — ¢t ~ conste™ " =k, (st,cT) (s — s).

For 9(c) = 0%F = &;(eU/vD*) (at — [a)/[c]): i.e., the width of the transition zone in front of the step 1/x ™
and the rate of decrease in the concentration behind the step are proportional to the speed £j of the step and
are dependent solely on the curvature of the sorption isotherm and the material diffusion coefficient D(c). In
general, x T is proportional to ,g;“—g je Behind the step, the concentration tends to the value corresponding to
the external solution in an exponential fashion, while the saturation varies more solely (in accordance with a
power law). The latter feature on numerical treatment may be seen as the saturation front lagging behind the

material-concentration front and having greater diffuseness.

We now consider the structure of the A'C' step (Fig. 1a and c), which corresponds to final displacement
of the oil after flooding of the deposit. In that case point A'={s",¢") is a simple saddle point (Fig. 2f, and C'=
*, ¢ is a simple cusp (Fig. 2d and e), and the desired path is the separatrix of the saddle A! belonging to
the cusp bundle entering point C' (Fig. 1c). The angle coefficient of the paths in the cusp bundle is dependent
on the sign of K=A"G*+ Bf")F':'S ~£5).

We integrate (2.3) near A'and C' for K> 0 (Fig. 2d) to get

; —~E -y - +
§—s% ~conste™ ", ¢ — ¢~ conste™ " = k, (sT, ) (s — s7) , 4T = — HEAE, n> & o0,

For K< 0 (Fig, 2e) the variables ahead of the step are relatedby ¢— ¢ ~const ls— s+lq, where q = -atgty
(F,+s"' 3 j) > 1, and they vary exponentially:

+

oyt .y
c—ct ~conste™™ ", s —s (x+/am

+

~ const e s —> 00,

As g » 1, the saturation tends to the value corresponding to the external solution ahead of the step more slowly
than does the concentration.

These results show that no internal structure exists for the step [s]<0 for apoint A' not satisfying the
condition £; =F,s {two saddle points in general do not have a common separatrix). Also,to coustruct the de-
sired path it was assumed that the following inequalities are obeyed for all s and ¢ from the rectangle E bounded
by the straight lines s =s¥ *

, C=C™:
min(et, ) < w(s) < max (e, ), Y(s, w(s)) = 0, (¢ — e7)Z(c) < 0, 2.9)

and equality occurs ouly at the points (s¥, ¢*); conditions (2.9) guarantee the absence of singular points for

2.3) in E that differ from the two vertices (s%, ¢¥), Violation of (2.9) means that there is no internal structure
even if (2.6) are obeyed for the characteristic velocities. Tn fact, if Z (¢) changes sign for eT=ec=c¢” it is shown
by 2.3) that the concentration distribution in the transition zone becomes multivalued. Violation of the first
condition in 2.9) also leads to a multivalued s ) and/or c@). The second inequality in 2.9) provides a basis
for constructing the c transition in the self~-modeling solution for arbitrary increase in functions ¢ ) and ¢ ()
for ¢ (c) =@,° and a (¢)= 0 by constructing their convex (concave) shells for a given concentration range [1].
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Therefore, (2.9) is to be considered as a stability condition for s, ¢ steps refined in relationto (1.6)). This
condition takes the form Y (s, ¢}/ (s —s™)=0 for s steps with ¢ =constant and has been proved rigorously in [8].

The structure of the step for ¥ =0 (harmful material) can be examined similarly; for definiteness we
assume that g << 0, 9 <O, [e] <<0, 7'(c) > 0 and consequently B> 0, while G<0; the stability of such a
step (Fig. 3a) is provided by conditions (2.9) and

<G=& B <y<i (2.10)
Here the point A=(s7, ¢7) is a simple saddle point, C = (s, c¢t) is a simple cusp, and B=(st, ¢ is a
simple twofold saddle~cusp with the cusp sector on the right of the straight line ¢~ ct=—atGte—s h/@at+

B+F,+S) and two saddle points to the left of this, while the desired path is the separatrix arising from the saddle
A and belonging to the cusp bundle of point B (Fig. 3b). :

The asymptotes of the variables in the stabilized zone are described by (2.8), in which + and — changes
places. Lag in the saturation behind the material concentration is here observed at the leading edge of the
stabilized zone.

These features of the internal structure persist for (] >0, e =0, @, =>0.

If a () and ¢ (c) are of arbitrary form, it is possible for there to be steps such that the signs of the rigorous
inequalities between £; and g* in 2.6) and (2.10) are replaced by the sign of equality [1], which complicates
the types of singular points in the (s, ¢) plane, but the form of the paths joining (87, ¢”) and (s¥, ¢) remains
as before, as does the global topological picture in the phase plane.

As an example we consider the step [¢]<0, [s]<0 for Fe= 0 (Fig. la and b). Let the following stability
condition be realized:

B =5<E B =5 <. @.11)

The type of singular point A and the field of directions near it are not altered. Near B, the desired path
coincides to a first approximation with the isocline at infinity and the curve Y, ¢)=0. The order of the con-~
tact is determined by the order of the zero &,— £; at the point ¥, ¢*): s and c tend to their limiting values
st and ¢ for n —=» in a power-law form rather tglan an exponential one,

From the step that satisfies the conditions

=<t & <g=%, @.12)
there is only a change in the type of the singu.lar point A=(s~, ¢7); the path of the nodal bundle and the isocline
at infinity fuse with the parabola c—~c™ =—(1/2)(F SS/F )s—s")? corresponding to the curve Y (s, ¢) =0 in the

region of point A. As above, s and ¢ vary in a power-law fashion for n ~=—w,

i gj =§2 simultaneously in (2.11) and (2.12), these features of the distributions of s and ¢ in the stabilized
zone occur simultaneously, The desired path approximates to the Y (s, ¢) =0 curve if the difference £, s, c)'-gj
tends to zero along it.

3. Contact-Discontinuity Structure. For &, (s,c)=¢ j the case of a contact discontinuity [9]), system (2.3}
does not have a solution of the desired form, This situation arises whena (¢) and ¢ (¢c) are linear, and it means
that (1.2) does not have a solution of traveling-wave type. This is related to the occurrence of a further small
parameter that has a decisive effect on the size of the stabilized zone.

The analysis of the discontinuity is not so trivial in that case. We consider it for linear isotherms a (c) =
agc, ¢ () =woc; (1.2) takes the following form after obvious transformations in a coordinate system linked to
the discontinuity:

m 08 af a
Tty ,—U~5—ﬁ¢'9):0,t=t,n=x—Vt, (3.1)

) é T 8
Z dr+70q+U®Q c=%~;~(0 C) V= v/ — @),
S =5+ (o + ap)/(% — @), [ =F - @o/(n—p,) — E;S.

We take S and f as new unknowns, while ¢ is a known function of S and £, to produce the second equation
n (3.1) to

m o df af ) & 8
7Sy -+ OSF et + 1L —!—T]-[(DQL +8SF.c 5 ((DQ)] =

v a
7 Fegy (DLIF ),

679



O = MIS/on -+ Nojiin, M(S, 1) = Dy’ — sy'd), N(S, f) = By F.,
L(Sa f) = af/dr] - 6chaS/6n1 8 = (F,s - gj)/F,c.

The extérnal discontinuous solution satisfied the conditions f@, +0)=0. To construct the principal term
in the internal expansion we put

f= (e/m)\*f0, § = (mlet)'/?y, 0 = (3.2)

and transform these equations while retaining only the terms of the same order of smallness in ¢ and assuming
that v'/e =0O(1); we then get a system of equations for the internal problem:

0% — UG (M )=
olu(s g —mig) - ar gy s 3o )]+ £ o0 2) .
The desired asymptotic structure is defined by the stationary solution
a[(%gs— UfO)j—g — M(—Z—CS-)Z] + -‘;L%(w%‘g-) =0,

S(z00) = %, f(-+00) = 0.

Note that system (3.3) is of first order in f°, and therefore allows ounly one boundary condition. & can
be shown that the boundary condition is lost on the inner side of the transition zone ¢ = —«, where 6= (F’S—
Ej)/F,c=0’ and this corresponds to choice of the boundary condition for f* in the problem of (3.3). By virtue
of the transformation of (3.2), this does not alter the feature that f =0 for the limiting stationary asymptote
r —w), for which the boundedness of £ (—=) is sufficient, and the linkage conditions for the internal and ex-
ternal solutions are met. I is notable however that one would be unable to construct as external expansion
for S by seeking the stationary distribution S¢) with f= 0,

Therefore, to define the main term in the internal expansion for a contact discontinuity one can first
find S) and f2(¢) from (3.3) and then determine ¢ by means of f(s, ¢) =0; as in the case of a typical problem
in convective thermal conduction, the characteristic size of the transition zone increases with time as 7 1/2.

4. Structure Due to Disequilibrium. Another factor that influences the structure of the s, c steps in
disequilibrium is the sorption, with redistribution of the material between the phases. We neglect diffusion
and capillary forces and restrict ourselves to the case where the rates of the exchange processes are depen-
dent only on the contents of the material in the phases and in the sorbed state. When we have

m% 3 o, m gy laes+ o —8)+a] + U [xeF + ¢ (1 — F)j =0, @.1)

da/dt = Alc, @, a), 0¢/0t = D(c, @), F = F(s, c, ¢),
$ =8, € = Co @ = ay(Cy), @ = Qylcy) (¢ = 0),
s=35" c=¢ a=ayc), ¢ = qi? (z = 0),

where a and ¢ are independent variables and ay(c) and ¢, (c) are their equilibrium values, which are the unique
roots of the equation Ale, @, a) =%, ¢)=0; we introduce the dimensionless variables x'=mx/L, t'=tU /L, A'=
A/Ay, /%), e=U /AL, v = U /§L and transform (4.1) to the following form (rimes subsequently omitted):

B I 0, g tnes+ ot —9)+al+ 4 [eF +o(—F)]=0, - e2)

edaldt = Alc, @, a), vap/dt = D(c, @), Alc, g, ag) = D(c, P} = 0,
s=spe=cy (=0, 5=, c=0 (=0

The external self-modeling solution corresponding to e =v =0 is taken as known., To construct the internal
solution in the region of the g, ¢ step, we transfer in (.2) to a coordinate system moving along with the steps
= &=Vt)/e, T =t) and seek a nontrivial stationary solution to

(F =) s+ a7 =0 (7 —Bigg) Ires + 9 (L— )+ al -+ 55 1xeF + 91 — F)] =, .5)
a

(v = Bigr) e = A0 (7 — Lt ) 0 = @ (e 0 b = whe,

s(—00) =57, ¢(—00) =¢", @(— 00) = y(c7), a(— o) =a,(c7).
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We integrate the stationary equations {4.3) on the basis of (1.5) to get a second-order system:

dajdn = — & A (¥ (¢, ), 9, a), dg/dn = — (BE) "D (¥ (¢, 0) ,9), @.4)
c=¥(pa)=c +ale—a)+plo—gr) F—F —§{s—s7) =0,
a=[c—qy/zl/0>0,p= [ao/;«: -+ (1 —_ {E,_.;—l) c}/m >0,
a5 = (7). 95 =g (c7), © =lay+ (1 —&7) Po)s
which corresponds to the following equation in the (¢, a) phase plane:

dalde = —hA(¥(e, a), 9, &)/ D(¥(q, ), ¢). (4.5)

The path joining the singular points (q)o s ao) in that case always exists and is unique, which remains to
be elucidated; these are conditions under which @ @) and a () are single-value function of 7 that satisfy the
boundarv conditions at n — =, Clearly, these conditions amount to obedience to the inequalities (c+ ~c¢ )A=0,
ct—c )&= 0 along the path.

If the material is not sorbed or does not dissolve in the oil, then the corresponding equation can be tnte-
grated in quadratures. We consider examples of such situations for [c] <0 steps with F CSO.

Let o= 0 and A=A(c, a) =c~cy (@), where ¢y, (c)) =c; then ¥ @)=c +(a—a(,)[c /layl, and from the stability
conditions for the step £, =§y= £, we have the inequalities ao ¢ = [apl/le] and agc < [a)]/[c], i.e., the straight
line ¢ = (@) intersects the equilibrium sorption isotherm a(c) or touches it at the points c3 aﬂE (Fig. 4a),

We integrate the first equation in (4.4) to get

a

1="n*— EJ { [Ef]] (@ —ay)—c (a’)}" o/, af <a;<ds,
*
%

where the behavior of a ) for -+~ will be determined by the order of the contacts at the points ¢ =c * in the
¢,a plane between the stralght line ¢ =¥ @) and the a =g, (c) equilibrium sorption isotherm. For a; ,ce= 0 we
have a — aF ~ conste™*™", gyt = [c]/[g,] "~ ¢1q (aF), >0 whilewhen x* becomes zero (first-order contact) the be-
havior of a(n) for n— a:oo becomes of power-law type: @ — a5 T~ En A = (1/2) 1,00 (ai).

As ¢=V {g) is linear, the same applies to the asymptotic behavior of the c{) in the stabilized zone. The
asymptote of sf) for n— £« is found from (4.4) and the condition at the step 5 :=[F]/{s]. For [s]<0, g:J AS<
F’S<F g2 50 s—s &~ —{—2F (c—c” )/F P s—sT mFE(e—ct)/(&— FY). At the step [s]>0 £ > joes s 50

s— st R FE(c— )/ (& —F)).
We similarly examine the structure of the stabilized zone for a= 0 and ®(c, ¢)=c~c¢,{p), where

¢, kpglc)) =c; in that case ¥ (p)=c +{p —~gglcl/legl and ¢ @) is determined by the form of the equilibrium iso-
therm ¢ =@, (c) and the order of its contact with the straight line ¢ =¥ (p) in the (¢, @) plane (Fig. 4b).

Finally we consider the general case on the assumption that the material is sorbed only from the aqueous
phase: Afc, a)=c—c @), ®lc, ¢)=c—c,y(p); let 4.5) become

dajdg = — k[~ +ala—a7) +B(o — ) — e @]/[c +ala—a7) +Blo—07) —c,(9)].

The desired path is the separatrix of the saddle point (qp(;L s aS‘) belonging to the cusp of point @y, a,) and
lies below the convex zero isocline ¢(a) = ¥(p, a) (Bd?q/da? = ¢, ., > 0) above the concave isocline at infinity
es(¢) = Y(p, a) (adla/de* = ¢y 99 > 0) (Fig. 4c). The directions of the path at the singular points are determined
by the slopes:

= = (da/dg) = [p -+ (0* + 4By | /20, p = ¢y — B — R {cFa — ),
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where &% -» (¢ig—B)/a, {fh—0and B> pB/(cts —a), ifh—w,

+ ~x=n

We integrate (4.4) in the region of the singular points to get @ — ay ~ conste
N~>z£00, 4 = B/k* 4 o — cfy, 5 = (o + p—ci;p)/h, where x* and y# are proportional to the differences be-
tween the slopes of the path and the reference curves (Fig. 4c) at the points (¢F, af) in the ¢{a) plane.

s —p
, @ — g ~ conste v

As ¢=¥(p, a) is linear, the behavior of c{) for 1~~=« is determined by the term exp [+n min (| x|,
lv £, L.e., by the slower of the two nonequilibrium processes.

If the path touches one of the reference curves at the points ((pff‘, af), the exponential behavior of-the
corresponding variable (p or a) and of the concentration ¢ () for n —=+= is replaced by a power-law form.

The results still apply for Afc, @, a) and ®(c, ¢} of arbitrary form that satisfy the conditions 4, > 0,
Ap>0, 4,0, Aw <0, 4,<0, O, >0 0, < 0,0 o <0 ; inthat case the slopes of the path at the
singular points (cpo , ai) and the values of x%, v T are determined by jt — lP + (pz + 4a<1)3ER*)‘”]/2aCDf;, ’X

PE 4 R¥ES, 4% = (QF +a®ik*)/h, p—pp* — @*, P —adt + A%, OF = pOT + 0%, R= = BAS + 43
This problem coincides with the classical sorption problem [10] for a homogeneous liquid.
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